Question 15

A mixture of ethane (C_2H_6) and ethene (C_2H_4) occupies 40 litres at 1.00 atm and at 400 K. The mixture reacts completely with 130 g of O_2 to produce CO_2 and H_2O . Assuming ideal gas behaviour, calculate the mole fractions of C_2H_4 and C_2H_6 in the mixture.

(1995 - 4 Marks)

Let the volume of ethane in mixture = x litre

 \therefore Volume of ethene = (40 - x) litre

Combustion reactions of ethane and ethene are:

(i)
$$C_2H_6(g) + 3\frac{1}{2}O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(l)$$

or $2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(l)$

(ii)
$$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l)$$

Volume of O2 required for complete combustion of ethane

$$=\frac{7x}{2}$$
 [For x litres]

Volume of O_2 required for complete combustion of ethene = $(40-x) \times 3$ [For (40-x)L]

$$\therefore$$
 Total volume of O₂ required = $\frac{7x}{2} + (40 - x)3 I$

Calculation of number of moles (n)

$$P = 1$$
 atm, $V = \frac{7x}{2} + (40 - x)3$ l ; $R = 0.082$ l atm K⁻¹ mol⁻¹; $T = 400$ K

Since
$$n = \frac{PV}{RT} = \frac{1 \times \left[\frac{7x}{2} + (40 - x)3 \right]}{0.082 \times 400} = \frac{7x + (40 - x)6}{2 \times 0.082 \times 400}$$

Mass of *n* moles of O₂ =
$$\left[\frac{7x + (40 - x)6}{2 \times 0.082 \times 400} \right] \times 32 = 130$$

or
$$130 = \left[\frac{7x + 240 - 6x}{65.6} \right] \times 32$$

$$\Rightarrow 8528 = 32 x + 240 \times 32 \Rightarrow 32x = 848 \Rightarrow \text{ or } x = \frac{848}{32} = 26.5$$

Hence mole fraction (%) of ethane
$$=\frac{26.5}{40} \times 100 = 66.25\%$$